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CARTESIAN DYNAMICS OF SIMPLE MOLECULES 
I DIATOMICS AND CENTROSYMMETRIC TRIATOMICS 

Key Words: Molecular vibrations; infrared spectroscopy; 
Raman spectroscopy; lattice dynamics. 

A. Anderson 

Department of Physics, 
University of Waterloo 

Water loo, Ontario 
Canada, N2L 3G1 

ABSTRACT 

A simple spring model for molecular vibrations is described 
in which Cartesian co-ordinates are used for both longitudinal 
and transverse displacements. The transverse restoring forces 
are shown to be electrostatic in origin and much weaker than the 
elastic longitudinal forces. The technique is applied to 
diatomic and centrosymmetric triatomic molecules. In the latter 
case, an analytical expression for the bending mode frequency is 
obtained which is equivalent to that derived by conventional 
methods using bending constants and internal co-ordinates. The 
model offers certain advantages when applied to the dynamics of 
crystals, for which Cartesian co-ordinates, aligned with the unit 
cell axes, are the natural choice. Reference is made to recent 
work on molecular and ionic crystals using extensions of this 
mode 1. 

INTRODUCTION 

In a recent series of papers from this laboratory, the 

lattice dynamics of simple molecular crystals have been presented 

in terms of simple spring constant models'-4. A feature of this 
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6 06 ANDERSON 

approach is that splittings of internal molecular modes are 

calculated in addition to the lattice mode frequencies, since a 

unified approach is used for both inter- and intra-molecular 

interactions. In the more conventional method, which involves 

intermolecular potential functions, the rigid molecule 

approximat ion is usually adopted. In developing the spring 

constant models, we have found that a Cartesian approach is most 

suitable for analysing the normal modes of the unit cell, since 

atomic displacements are usually expressed in terms of vectors 

parallel to these axes. Similarly, a comparison of unit cell 

modes with those of the isolated molecule is most conveniently 

accomplished in terms of Cartesian co-ordinates. An offshoot of 

these lattice dynamics calculations has therefore been the 

development of analytical expressions for the normal mode 

frequencies of simple molecules in purely Cartesian form, instead 

of the usual one involving internal co-ordinates such as bond 

lengths and angles. 

In this report, the principles of the mothod will be 

described and its equivalence to other approaches established by 

comparing the expressions obtained for diatomic and triatomic 

linear molecules. In particular, the treatment of bending modes 

is presented in terms of electrostatic interactions expressed in 

Cartesian form, subject to the constraint that there are no 

restoring forces involved for the pure rotation of an isolated 

molecule. From the observed frequencies of the normal modes by 
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CARTESIAN DYNAMICS 607 

FIG. 1 Model of Diatomic Molecule. 
(a) A t  equilibrium; length 110, spring constant ko. 

(b) Longitudinal displacement, Az; F = -koAz. 
(c) Transverse displacement, Ax; FT = -k0Ax2/2110. 

(d) Transverse Coulombic Force: F = -6 Ax. 

C 

c,T 

Raman and infrared spectroscopy, principal force constants are 

calculated for these simple molecules. 

DESCRIPTION OF THE MODEL 

We consider first the interactions between two atoms. The 

short range elastic contribution may be represented by a 

longitudinal spring obeying Hooke’s law, with force constant ko, 

as shown in Figure 1. For displacements parallel to this spring, 

a longitudinal restoring force, F = -k Az, is set up on each 

atom. For perpendicular o r  transverse displacements, however, 

the extension of the spring is approximately Ax /2l where e is 

the equilibrium separation, and so no first order (harmonic) 

restoring force is created. There will also be an electrostatic 

contribution, which may be approximately represented by placing 

L 0 

2 
0’ 0 
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608 ANDERSON 

point charges on the atoms. The Coulombic force in this case is 

given by 

This will be attractive or repulsive depending on whether the 

charges have opposite o r  identical signs, respectively. The net 

um separation effect will be to s 

between the atoms 

electrostatic forces 

ightly change the equilibr 

until a balance between 

is achieved. Longitudinal 

elastic and 

d i sp 1 ace me nt s 

from this new equilibrium position lead to oscillations 

controlled by a slightly modified force constant, k, which 

includes the weak electrostatic contribution. 

In contrast to the purely elastic case, transverse 

displacements of atoms with charges of opposite sign do lead to 

first order restoring forces of the form, 

where 6 represents an "electrostatic force constant", generally 

much weaker than the longitudinal elastic force constant, k. 

These transverse force constants are subject to constraints, 

since for pure rotations there can be no restoring forces. Only 

for distortions from the linear configuration (that is, bending 

modes) will finite restoring forces be generated. 

APPLICATION TO DIATOMIC MOLECULES 

We consider first the simple case of a diatomic molecule, 

AB, with atoms of mass m and m and an equilibrium separation L .  
1 2 
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CARTESIAN DYNAMICS 609 

There are 6 degrees of freedom, of which 3 correspond to pure 

translations and 2 to pure rotations. The only internal mode is 

that corresponding to stretching and compressing the longitudinal 

spring, with Hooke law constant k .  The equations of motion for 

displacements along the molecular axis have the following form: 

in 1 1  z = -k[zl - 2.1 and mzz2  = -k[z2 - zl] 

For harmonic oscillations, z = z cos wt and 
n no 

2 2 z = -w z cos ot = -w z 
n no n 

We therefore obtain two coupled linear equations in z and z . 
1 2 

m w 2 z - k[zl - z2] = 0 and m w 2 z - k[z2 - zl] = 0 
1 1  2 2  

The secular determinant has the form 
2 I - 

m u  2 - k I = '  
2 

which gives for the eigenfrequencies w = 0 (corresponding to a 

pure translation of the whole molecule) and 
0 

w = (k/p11'2 with 1.1 = m m /(ml+m2) ( 1 )  

(corresponding to the stretching mode, in which the two atoms 

move with opposite phase and with amplitudes such that the centre 

1 1 2  

of mass is stationary). For heteropolar diatomics (m f m 1, 
1 2 

this motion will result in an oscillatory dipole and the mode 

wi 11 be infrared active. 

For homopolar molecules, m = m = m, and equation ( 1 )  
1 2 
1 /2 

reduces to w = kk/m] 
1 

( 2 )  

No dipole change is involved in this case, but there will be an 
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oscillatory change in the po 

observed in the Raman effect 

ANDERSON 

arizability and the vibration may be 

We next consider transverse displacements, in the x 

direction, say. The equations of motion are very similar to 

those for the longitudinal case: 

m 1 1  x = 6[xl - x2] and m2x2 = -8[x2 - xl]. 

In addition to the pure translational mode [xl = x2], there is a 

second zero frequency mode corresponding to a pure rotation. In 

this case, x = -x and x = x = 0. The above equations are 

satisfied only if 6 = 0, and so the transverse motion is trivial 

in this case. For triatomic and other more complex molecules, it 

will be shown that application of these simple principles leads 

1 2 1 2 

to non-zero transverse force constants and bending frequencies. 

APPLICATION TO CENTROSYMMETRIC TRIATOMIC LINEAR MOLECULES 

In the case of ABA linear molecules there are 3n - 5 = 4 

internal degrees of freedom. These comprise 2 stretching modes 

involving displacements along the molecular axis and a doubly 

degenerate bending mode involving transverse displacements. For 

these 3 frequencies, we will use 3 independent force constants to 

model the system. As shown in Figure 2, k represents the 2 A-B 

bonds and k the A-A interaction, with the expectation that 

k2 < kl. The equations of motion for longitudinal displacements 

are as follows: 

1 

2 

m 1 1  z = -kl [zl-z2] - k2[zl - 2.1 
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CARTESIAN DYNAMICS 611 

m z  = - k  z - z  
2 2  1[ 1] - klk2 - 
1 3  

The secular determinant could now be derived and solved as in the 

diatomic case. However, a simplification results if  i t  is 

recognized that the normal modes will involve displacements of 

the outside atoms which are equal in amplitude and either in o r  

out of phase. We define q, = x + x * q, = x1 - x . and q, = x . 
1 3' 3' 2 

FIG. 2 Model of Centrosymmetric Triatomic Molecule. 
(a) Longitudinal Springs, k,,k,. 
(b)  Transverse Springs, 6,, 6,. 
(c) Form of Normal Modes. 
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6 12 ANDERSON 

Manipulation of the above three equations leads to the following: 

mlql = -k 1 [q1 - 2q2] 

m2i2 = -k 1 p42 - 411 

m1q3 = -k1q3 - 2k2q3 
The equations form a "blocked" secular determinant: 

0 2 m w -k 
2kl 1 1  

kl m2w2 -2 kl 0 
2 0 0 m 1 0 -kl-2k2 

= o  

The allowed eigenfrequencies are then easily deduced as follows: 

( 3 )  From the lower [ 1  x 11 block, w2 1 = [kl + 2k2]/ml 
From the upper [2 x 21 block, we obtain after some algebraic 

mani pul at ion, 0 = o  
0 

and w 2 = kl [h + \] 
3 

( 4 )  

The mode corresponding to w is the pure translation of the whole 

molecule; w is the Raman active symmetric stretch, in which the 

central atom is stationary so that m does not appear in equation 

( 3 ) ;  and w is the infrared active asymmetric stretch, in which 

the 2 outside atoms move in phase, so that k does not appear in 

equation (4). The numerical subscripts used for t h e  

eigenfrequencies follow the convention used by Herzberg . 

this, o corresponds to the bending mode, for which the analysis 

f 01 lows. 

0 

1 

2 

3 

2 

5 In 

2 

For transverse displacements, we introduce 2 force 

The constants, a1 and a2, indicated by bow symbols in Figure 2. 
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C A R T E S I A N  D Y N A M I C S  613 

analysis is identical to that for the stretching modes, with 6 ' s  

replacing k's. However, in addition to the zero frequency 

translational mode, the condition for a pure rotation leads to a 

relation between 6 and 6 The equation of motion f o r  x has 

the form 
1 2' 1 

m 1 1  x = -a1 [xl - x2] - ti2[x1-x3). 

For a pure rotation, we let x = -x and x = 0, 
1 3 2 

since there is no restoring force. Substitut 

and have x = 0.  

on in the above 

1 

-Ci1/2 

The eigenvalue equation corresponding to (3) above, therefore, 

equation leads to the following result: 6 =  
2 

has zero frequency, since a1 + 2A2 = 0 .  The opposite signs of [ I  
a1 and a2 fit our interpretation of their origins in 

electrostatic interactions, when one considers the charges on the 

atoms involved. The bending mode is represented by equation (4) 

above, suitably modified: 

5 This result is identical t o  that given by Herzberg , if his 

k6 is equal to ~3~/2.E', where .E is the A-B bond length. This mode 

generates an oscillatory dipole perpendicular to the molecule and 

may be observed as an infrared absorption. 

RESULTS 

In Table 1, the observed stretching frequencies of a number 

of heteropolar diatomic molecules are listed, together with 

values of the force constant k, calculated from equation ( 1 ) .  

The working units of k, derived from masses expressed in atomic 
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TABLE 1 

Heteropolar Diatomic Molecules 
Observed Stretching Frequencies and Calculated Force Constants 

Mo 1 ecu 1 e 
HC 1 
HBr 
HI 
HF 
NO 
co 
I Br 
ICl 

* From Ref. 5. 

Frequency (cm-' ) * 
2885.9 

2559.3 

2230.1 

3961.6 

1875.9 

2143.2 

265 

38 1 

Force Constant (u 
8.163 x 10" 
6.520 x 10" 
4.973 x lo8 
1.502 lo7 
2.628 lo7 
3.151 lo7 
3.443 x 10" 
4.023 x 10" 

TABLE 2 

Homopolar Diatomic Molecules 
Observed Stretching Frequencies and Calculated Force Constants 

Mo 1 ecul e Frequency (cm-' 1 * Force Constant (u 
4160.2 8.723 x 10" 

H2 

N2 
2330.7 3.804 lo7 

0- 1554.7 1.934 x lo7 
L 

892 

556 

Br 32 1 

213 

F2 

c12 

I2 

2 

* From Ref. 5. 

7.558 x 10" 
5.480 x 10" 
4.053 x 10" 

2.879 x 10" 

TABLE 3 

Centrosymmetric Triatomic Molecules 
Observed Vibrational Frequencies and Calculated Force Constants 

Molecule Frequencies (cm-' 1' Force Constants(ucm-2) 

0 kl k2 g l  
0 0 

2 3 - - 1 - 
1333 667 2349 2.407~10~ 2.180~10" 1.943~10~ 

658 397 1535 1.192~10~ 9.822~10' 7.972~10' 

CSez 368 308 1303 9.476~10' 6.087~10~ 5.294~10' 

c02 

cs2 

* From Refs. 6, 7. 
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CARTESIAN DYNAMICS 615 

mass units (u) and frequencies in wavenumbers (cm-’1, are ucm -2 . 
These can be converted to standard units by multiplying the table 

entries by 5.90 x lo-’ for N/m or by 5.90 x for dynelcm. 

Similar listings for homopolar diatomics are given in Table 2, 

where equation (2) has been used to calculate k. For 

centrosymmetric triatomic molecules, observed vibrational 

frequencies are listed in Table 3, together with values of the 

force constants k 

and (5). 

k2 and al, calculated from equations (31, (4) 
1’ 

A useful test of the spring constant model for these 

molecules is provided by a comparison of the observed and 

calculated normal mode frequencies for isotopic species. These 

modes are observed as weak satellite peaks in the Raman and 

infrared spectra of naturally occurring samples, usually close t o  

and on the low frequency side of the strong fundamentals of the 

main species. Spectra of enriched samples and of fully 

deuterated molecules are also often recorded. In solid state 

spectroscopy, it is important to distinguish peaks resulting from 

isotopic species from those caused by crystal field effects. In 

general, excellent agreement is obtained for these isotopic 

shifts, especially if proper account is taken of small anharmonic 

corrections, as discussed by Herzberg . 

DISCUSSION 

5 

The expressions derived for the normal mode frequencies of 

these simple molecules are completely equivalent to those 
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616 ANDERSON 

obtained by previous workers. The simple spring model gives an 

excellent representation of the normal vibrations of these 

molecules, as confirmed by the good agreement found for the 

isotopic species. Interesting trends in the magnitudes of the 

force constahts for series of molecules such as the hydrogen 

halides and the halogens may be observed in Tables 1 and 2 

respectively. For the mixed halogens, ICl and IBr, the force 

constants lie between those of the corresponding homopolar 

halogens. For the triatomics, as expected, k is much less than 

kl in all cases, because of the larger separations between 

interacting atoms. The transverse force constants, are even 

smaller than k2, a consequence of their electrostatic rather than 

elastic origins. 

2 

The model has been extended and applied to crystals of the 

three types of molecules discussed in this paper. Although 

numerical rather than analytical solutions are obtained in these 

cases, the model successfully predicts the lattice frequencies 

and crystal field splittings of the internal modes with the use 

of relatively few force constants. For the hydrogen halide 

crystals HF, HC1 and HBr2, which have isomorphous structures at 

low temperatures, the trend of decreasing hydrogen bond strengths 

with increasing halogen mass was confirmed, and the effects of 

weak intermolecular transverse force constants were investigated. 

For the halogen crystals, C12, Br2 and I2 , which are also 

isomorphous, the nearest neighbour intermolecular forces were 

1 
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CARTESIAN DYNAMICS 6 1  7 

found to increase from C12 to I2 as a result of their 

increasingly covalent nature. The vibrations of solid CS2, which 

is isomorphous to the halogens, were also successfully reproduced 

by the spring constant model . All of the above unit cells are 

orthorhombic. A paper in preparation describes the application 

of the model to the cubic crystals a - N2 and C02. The 

tetrahedral molecule SnBr which forms a monoclinic crystal, has 

also been successfully modelled with these techniques'. 

3 

4 '  

8 Extension to ionic crystals such as the alkali cyanides and 

layered compounds of the CdC12 or Cd12 types has also been 

successful. In the latter case, analytical solutions were 

obtained, very similar to those derived for triatomic molecules 

in this paper. This is because for these structures, the normal 

modes involve motions of the ionic layers treated as rigid units 

and strongly resemble those of ABA molecules, weakly coupled to 

form linear chains. 

9-12 

In future papers, the techniques outlined here will be 

applied to more complex molecules. It will be shown that the use 

of Cartesian coordinates and combinations of longitudinal and 

transverse force constants lead to results which are identical to 

those derived by more conventional techniques and in some cases 

allow extensions to be made to the analytical expressions. The 

second paper in this series will discuss non-centrosymmetric 

linear triatomic molecules. 
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