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CARTESIAN DYNAMICS OF SIMPLE MOLECULES
I DIATOMICS AND CENTROSYMMETRIC TRIATOMICS
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Department of Physics,
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

ABSTRACT

A simple spring model for molecular vibrations is described
in which Cartesian co-ordinates are used for both longitudinal
and transverse displacements. The transverse restoring forces
are shown to be electrostatic in origin and much weaker than the
elastic longitudinal forces. The technique 1is applied to
diatomic and centrosymmetric triatomic molecules. In the latter
case, an analytical expression for the bending mode frequency is
obtained which is equivalent to that derived by conventional
methods using bending constants and internal co-ordinates. The
model offers certain advantages when applied to the dynamics of
crystals, for which Cartesian co-ordinates, aligned with the unit
cell axes, are the natural choice. Reference is made to recent
work on molecular and ionic crystals using extensions of this
model.

INTRODUCTION
In a recent series of papers from this laboratory, the
lattice dynamics of simple molecular crystals have been presented

"% A feature of this

in terms of simple spring constant models1
605
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approach 1is that splittings of internal molecular modes are
calculated in addition to the lattice mode frequencies, since a

unified approach 1is used for both inter- and intra-molecular

interactions. In the more conventional method, which involves
intermolecular potential functions, the rigid molecule
approximation is usually adopted. In developing the spring

constant models, we have found that a cartesian approach is most
suitable for analysing the normal modes of the unit cell, since
atomic displacements are usually expressed in terms of vectors
parallel to these axes. Similarly, a comparison of unit cell
modes with those of the isolated molecule is most conveniently
accomplished in terms of carteslian co-ordinates. An offshoot of
these lattice dynamics calculations has therefore been the
development of analytical expressions for the normal mode
frequencies of simple molecules in purely cartesian form, instead
of the usual one involving internal co-ordinates such as bond
lengths and angles.

In this report, the principles of the m=thod will be
described and its equivalence to other approaches established by
comparing the expressions obtained for diatomic and triatomic
linear molecules. In particular, the treatment of bending modes
is presented in terms of electrostatic interactions expressed in
cartesian form, subject to the constraint that there are no
restoring forces involved for the pure rotation of an isolated

molecule. From the observed frequencies of the normal modes by
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{a) < <, > (b) < L+az >
ml KO mz — FL «—
(c) >

FIG., 1 Model of Diatomic Molecule,
(a) At equilibrium; length %3, spring constant kg.

(b) Longitudinal displacement, Az; Fc = -kplz.

(c) Transverse displacement, Ax; F, = —kOAXZIZRO.

T

(d) Transverse Coulombic Force: FC T = -§ Ax.
’

Raman and infrared spectroscopy, principal force constants are
calculated for these simple molecules.

DESCRIPTION OF THE MODEL

We consider first the interactions between two atoms. The
short range elastic contribution may be represented by a
longitudinal spring obeying Hooke’s law, with force constant ko'
as shown in Figure 1. For displacements parallel to this spring,
a longitudinal restoring force, FL = —ko Az, is set up on each
atom. For perpendicular or transverse displacements, however,
the extension of the spring is approximately Ax2/2£0, where 80 is
the equilibrium separation, and so no first order (harmonic)
restoring force is created. There will also be an electrostatic

contribution, which may be approximately represented by placing
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point charges on the atoms. The Coulombic force in this case is

given by
- 1 qlqz
c,L 4ne 2
o ¢
0

This will be attractive or repulsive depending on whether the
charges have opposite or identical signs, respectively. The net
effect will be to slightly change the equilibrium separation
between the atoms wuntil a balance between elastic and
electrostatic forces is achieved. Longitudinal displacements
from this new equilibrium position lead to oscillations
controlled by a slightly modified force constant, k, which
includes the weak electrostatic contribution.

In contrast to the purely elastic -case, transverse
displacements of atoms with charges of opposite sign do lead to

first order restoring forces of the form,

q.q_Ax

F _=- -+ 12 . _ 5
c,T 4ne 23
o

where 8 represents an "electrostatic force constant”, generally
much weaker than the longitudinal elastic force constant, k.
These transverse force constants are subject to constraints,
since for pure rotations there can be no restoring forces. Only
for distortions from the linear configuration (that is, bending
modes) will finite restoring forces be generated.

APPLICATION TO DIATOMIC MOLECULES

We consider first the simple case of a diatomic molecule,

AB, with atoms of mass m and m, and an equilibrium separation L
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There are 6 degrees of freedom, of which 3 correspond to pure
translations and 2 to pure rotations. The only internal mode is
that corresponding to stretching and compressing the longitudinal
spring, with Hooke law constant k. The equations of motion for
displacements along the molecular axis have the following form:
mz =-k[2 -z] and m_z =—k[z —z]
171 1 2 272 2 1
For harmonic oscillations, z =z cos wt and

no

- 2 2
z = -wz coswt=-wz
n no n

We therefore obtain two coupled linear equations in 2, and z,.

mwzz -k[z —z] =0 and mwzz -k[z —z] =0
1 1 1 2 2 T2 2 1
The secular determinant has the form
2

mw -k k
1

2

k mw - k

which gives for the elgenfrequencies w, = 0 (corresponding to a
pure translation of the whole molecule) and

o = (k/“)l/Z

with g = mlmz/(m1+m2) (1)
(corresponding to the stretching mode, in which the two atoms
move with opposite phase and with amplitudes such that the centre
of mass is stationary). For heteropolar diatomics (m1 3 m2),
this motion will result in an oscillatory dipole and the mode

will be infrared active.

For homopolar molecules, mo=m, =m and equation (1)

172
reduces to w = [Zk/m] (2)

No dipole change is involved in this case, but there will be an
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oscillatory change in the polarizability and the vibration may be
observed in the Raman effect.

We next consider transverse displacements, in the x
direction, say. The equations of motion are very similar to
those for the longitudinal case:

mlil = 3[X1 - x2] and m2§2 = —6[x2 - xl].

In addition to the pure translational mode [x1 = xz], there is a
second zero frequency mode corresponding to a pure rotation. In
this case, x = -x and §1 = *2 = 0. The above equations are
satisfied only if 8§ = 0, and so the transverse motion is trivial
in this case. For triatomic and other more complex molecules, it
will be shown that application of these simple principles leads
to non-zero transverse force constants and bending frequencies.

APPLICATION TO CENTROSYMMETRIC TRIATOMIC LINEAR MOLECULES

In the case of ABA linear molecules there are 3n - § = 4
internal degrees of freedom. These comprise 2 stretching modes
involving displacements along the molecular axis and a doubly
degenerate bending mode involving transverse displacements. For
these 3 frequencies, we will use 3 independent force constants to
model the system. As shown in Figure 2, k1 represents the 2 A-B
bonds and k2 the A-A interaction, with the expectation that

k2 « k1' The equations of motion for longitudinal displacements

mlzl = _ki [21—22] - k2[zl - 23]

are as follows:
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mz = -k {z -z ] -k [z -z ]

272 1172 ™1 1|72 3

mz = -k [z -z ] -k [z -z ]

173 1{73 T2 2|73 1
The secular determinant could now be derived and solved as in the
diatomic case. However, a simplification results if it is

recognized that the normal modes will involve displacements of

the outside atoms which are equal in amplitude and either in or

out of phase. We define q1 = x1 + x3; q3 = x1 - x3; and q2 = xg
KZ
! @ iis g
' K Ko
m, ] 22 t m,
(b)
8[ 8I
(¢c)
“« (O o O
« O o O
A
w, () O ()
“» (OO0 O

FIG. 2 Model of Centrosymmetric Triatomic Molecule.
(a) Longitudinal Springs, kl’kz‘

(b) Transverse Springs, &§., §

1* ~72°

(c) Form of Normal Modes.
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Manipulation of the above three equations leads to the following:
md, = -k [q1 - 2q2]
292 = Ky [2q2 - q1]

md, = -kq; - 2kq,

E]
L
[}

The equations form a "blocked" secular determinant:

m w-k 2k 0
1 1 1
k m w2-2k 0 =0
1 2 1
0 0 m w2-k -2k
1 1 2

The allowed eigenfrequencies are then easily deduced as follows:
From the lower [1 x 1] block, w? = [k1 + Zkz]//ﬁl (3)
From the upper [2 x 2] block, we obtain after some algebraic

manipulation, w =0
and w =k |=—+ = (4)

The mode corresponding to A is the pure translation of the whole
molecule; W is the Raman active symmetric stretch, in which the
central atom is stationary so that m, does not appear in equation
(3); and W, is the infrared active asymmetric stretch, in which
the 2 outside atoms move in phase, so that k2 does not appear in
equation (4). The numerical subscripts wused for ‘the
eigenfrequencies follow the convention used by Herzbergs. In
this, w, corresponds to the bending mode, for which the analysis
follows.

For transverse displacements, we iIntroduce 2 force

constants, 61 and 62, indicated by bow symbols in Figure 2. The
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analysis is identical to that for the stretching modes, with &8's
replacing k’s. However, 1in addition to the zero frequency
translational mode, the condition for a pure rotation leads to a

relation between 61 and 62. The equation of motion for X has

the form
mx = -8 [x - x ] -8 [x -X ].
171 11 2 2171 73
For a pure rotation, we let x1 = -x3 and x2 = 0, and have *1 = 0,
since there is no restoring force. Substitution in the above
equation leads to the following result: 62 = —61/2

The eigenvalue equation corresponding to (3) above, therefore,
has zero frequency, since [61 + 262] = 0. The opposite signs of
61 and 62 fit our interpretation of their origins 1in
electrostatic interactions, when one considers the charges on the
atoms involved. The bending mode is represented by equation (4)
above, suitably modified:
1 2 1 2

This result is identical to that given by Herzbergs, if his
k6 is equal to 61/222, where £ is the A-B bond length. This mode
generates an oscillatory dipole perpendicular to the molecule and
may be observed as an infrared absorption.
RESULTS

In Table 1, the observed stretching frequencies of a number
of heteropolar diatomic molecules are 1listed, together with

values of the force constant k, calculated from equation (1).

The working unlts of k, derived from masses expressed in atomic
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TABLE 1

Heteropolar Diatomic Molecules

Observed Stretching Frequencles and Calculated Force Constants

Molecule

HC1
HBr
HI
HF
NO
co
IBr
1C1

Frequency (cm )* Force Constant (u cm =)

* From Ref. 5.

2885.9 8.163 x 10°
2559.3 6.520 x 10°
2230.1 4.973 x 10°
3961.6 1.502 x 10’
1875.9 2.628 x 10°
2143.2 3.151 x 107
265 3.443 x 10°
381 4.023 x 10°
TABLE 2

Homopolar Diatomic Molecules

Observed Stretching Frequencles and Calculated Force Constants

Molecule

Frequency L Force Constant (u cm 2)

* From Ref. 5.

4160.2 8.723 x 10°
2330.7 3.804 x 10°
1554. 7 1.934 x 107
892 7.558 x 10°
556 5.480 x 10°
321 4.053 x 10°
213 2.879 x 10°
TABLE 3

Centrosymmetric Triatomic Molecules

Observed Vibrational Frequencies and Calculated Force Constants

Molecule Frequencies (cm™1)* Force Constants(ucm %)
wl (4)2 03 ki k2 61
co, 1333 667 2349 2.407x10° 2.180x10° 1.943x10°
Cs, 658 397 1535  1.192x10° 9.822x10° 7.972x10°
CSe 368 308 1303 9.476x10° 6.087x10° 5.294x10°

2

* From Refs. 6, 7.
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mass units (u) and frequencies in wavenumbers (cm-l), are ucm 2.
These can be converted to standard units by multiplying the table
entries by 5.90 x 10™° for N/m or by 5.90 x 1072 for dyne/cm.
Similar listings for homopolar diatomics are given in Table 2,
where equation (2) has been used to calculate k. For
centrosymmetric triatomic molecules, observed vibrational
frequencies are listed in Table 3, together with values of the
force constants k1' k2 and 51, calculated from equations (3), (4)
and (5).

A useful test of the spring constant model for these
molecules 1is provided by a comparison of the observed and
calculated normal mode frequencies for isotopic species. These
modes are observed as weak satellite peaks in the Raman and
infrared spectra of naturally occurring samples, usually close to
and on the low frequency side of the strong fundamentals of the
main species. Spectra of enriched samples and of fully
deuterated molecules are also often recorded. In solid state
spectroscopy, it ls important to distinguish peaks resulting from
isotopic species from those caused by crystal field effects. In
general, excellent agreement 1s obtained for these 1isotopic
shifts, especially if proper account is taken of small anharmonic
corrections, as discussed by Herzbergs.

DISCUSSION
The expressions derived for the normal mode frequencies of

these simple molecules are completely equivalent to those
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obtained by previous workers. The simple spring model gives an
excellent representation of the normal vibrations of these
molecules, as confirmed by the good agreement found for the

isotopic species. Interesting trends in the magnitudes of the

force constents for series of molecules such as the hydrogen
halides and the halogens may be observed in Tables 1 and 2
respectively. For the mixed halogens, ICl and IBr, the force
constants lie between those of the corresponding homopolar
halogens. For the triatomics, as expected, k2 is much less than
k1 in all cases, because of the larger separations between
interacting atoms. The transverse force constants, 61, are even
smaller than k2, a consequence of their electrostatic rather than
elastic origins.

The model has been extended and applied to crystals of the
three types of molecules discussed in this paper. Although
numerical rather than analytical solutions are obtained in these
cases, the model successfully predicts the lattice frequencies
and crystal field splittings of the internal modes with the use
of relatively few force constants. For the hydrogen halide
crystals HF, HCl and HBrz, which have isomorphous structures at
low temperatures, the trend of decreasing hydrogen bond strengths
with increasing halogen mass was confirmed, and the effects of
weak intermolecular transverse force constants were investigated.
For the halogen crystals, Clz’ Br2 and 121, which are also

isomorphous, the nearest neighbour intermeolecular forces were
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found to 1increase from Cl2 to 12 as a result of their
increasingly covalent nature. The vibrations of solid CSZ, which
is isomorphous to the halogens, were also successfully reproduced
by the spring constant models. All of the above unit cells are
orthorhombic. A paper in preparation describes the application
of the model to the cubic crystals a - N2 and C02. The
tetrahedral molecule SnBr(, which forms a monoclinic crystal, has
also been successfully modelled with these techniques4.

Extension to lonic crystals such as the alkali cyanides8 and
layered compounds of the CdCl2 or CdI2 typesgl'12 has also been
successful. In the latter case, analytical solutions were
obtained, very similar to those derived for triatomic molecules
in this paper. This is because for these structures, the normal
modes involve motions of the ionic layers treated as rigid units
and strongly resemble those of ABA molecules, weakly coupled to
form linear chains.

In future papers, the techniques outlined here will be
applied to more complex molecules. It will be shown that the use
of Cartesian coordinates and combinations of longitudinal and
transverse force constants lead to results which are identical to
those derived by more conventional techniques and in some cases
allow extensions to be made to the analytical expressions. The
second paper in this series will discuss non-centrosymmetric

linear triatomic molecules.



04: 03 30 January 2011

Downl oaded At:

618 ANDERSON

ACKNOWLEDGMENTS
Helpful discussions with B. Andrews, 0.S. Binbrek, J.F.
Higgs, J.W. Leech, B.H. Torrie and W.Y. Zeng are gratefully
acknowledged. This research was supported by grants from the

Natural Sciences and Engineering Research Council of Canada.

REFERENCES

1. Higgs J.F., Anderson A. Phys. Stat. Sol. (b) 1985; 123: 568.

2. Higgs J.F., 2Zeng W.Y., Anderson A. Phys. Stat. Sol. (b)
1986; 133: 475.

3. Higgs J.F., Anderson A. Phys Stat. Sol. (b) 1986; 137: 38.

4. Zeng W.Y., Higgs J.F., Anderson A. Phys. Stat. Sol. (b)
1987; 139: 85

5. Herzberg G. "Spectra of Diatomic Molecules”, vanNostrand
Princeton, N.J., 1950.

6. Shimanouchi T. "Tables of Molecular Vibrational
Frequencies", NBS Nat. Std. Ref. Data Series, 1867.

7. King G.W., Srikameswaran K. J. Mol. Spectrosc. 1969; 29:
491.

8. Anderson A., Gash P., Liity F. Phys. Stat. Sol. (b) 1981;
105: 315.

9. Anderson A., Todoeschuck J.P. Can. J. Spectrosc. 1977; 22:
113.

10. Anderson A., Lo Y.W., Todoeschuck J.P. Spectrosc. Lett.
1981; 14: 105.

11. Anderson A., Lo Y.W., Todoeschuck J.P. Spectrosc. Lett.
1981; 14: 301.

12. Anderson A., Lo Y.W. Spectrosc. Lett. 1981; 14: 603.

Date Received:  01/26/89
Date Accepted: 03/02/89



